



| Feature and Distribution Evolvable Streams |
|--------------------------------------------|
| Feature space change [NeurIPS'17]          |

| r catare space change [iteam si/] |      |      |            |              |     |     |      |     |  |
|-----------------------------------|------|------|------------|--------------|-----|-----|------|-----|--|
|                                   |      |      |            |              |     |     |      |     |  |
| (⊡))                              | (⊡)) | •••• | <b>(⊡)</b> | -<br>Î       |     |     | •••• | ژله |  |
| 0.7                               | 0.6  |      | 0.8        |              |     |     |      |     |  |
| 0.4                               | 0.2  |      | 0.3        |              |     |     |      |     |  |
| 0.2                               | 0.5  |      | 0.6        |              |     |     |      |     |  |
| :                                 | ÷    |      | :          |              |     |     |      |     |  |
| 0.7                               | 0.3  | •••• | 0.4        | 0.6          | 0.8 | 0.5 |      | 0.7 |  |
| 0.5                               | 0.6  |      | 0.8        | 0.6          | 0.3 | 0.1 | •••• | 0.1 |  |
|                                   |      |      |            | 0.2          | 0.2 | 0.6 |      | 0.4 |  |
|                                   |      |      |            | <b>i</b> : . | :   | :   |      | :   |  |
|                                   |      |      |            | 0.5          | 0.4 | 0.8 |      | 0.5 |  |
|                                   |      |      |            | 0.3          | 0.9 | 0.4 | •••• | 0.3 |  |
|                                   |      |      |            |              |     |     |      |     |  |

[NeurIPS'17] Hou, B.-J., Zhang, L., & Zhou, Z.-H. (2017). Learning with feature evolvable streams. [MLJ'20] Zhao, P., Cai, L.-W., & Zhou, Z.-H. (2020). Handling concept drift via model reuse.

# **Evolving Discrepancy & Generalization Bound**

# Idea: Measure Discrepancy of data from different feature spaces

Bridge the gap via the evolving stage

- data in the evolving stage share the same labels
- admissible loss aligns the hypotheses via the evolving stage lacksquare

$$lisc''_{E}(S_{P}, S_{C}) = \sup_{g \in \mathcal{G}, h \in \mathcal{H}} \left| \hat{R}_{S_{P}}(g, y_{P}) - \hat{R}_{S_{\tilde{P}}}(g, y_{\tilde{P}}) \right| + \left| \hat{R}_{S_{\tilde{C}}}(h, y_{\tilde{C}}) - \hat{R}_{S_{\tilde{P}}}(g, y_{\tilde{P}}) \right|$$

$$Previous Stage to Evolving Stage to Evolving Stage to Culture Stage to Culture$$

### **Generalization bound**

• The expected risk on the current data batch is upper bounded by empirical risk & evolving discrepancy

 $R_{\mathcal{D}_C}(h, f_C) \leq \left| \hat{R}_{S_{P_{\alpha}}}(g, y_P) \right| + \left| disc_E(S_P, S_C) \right| + 2L\mathfrak{R}_n(\mathcal{H}) + 2L\mathfrak{R}_n(\mathcal$ 

## Remarks

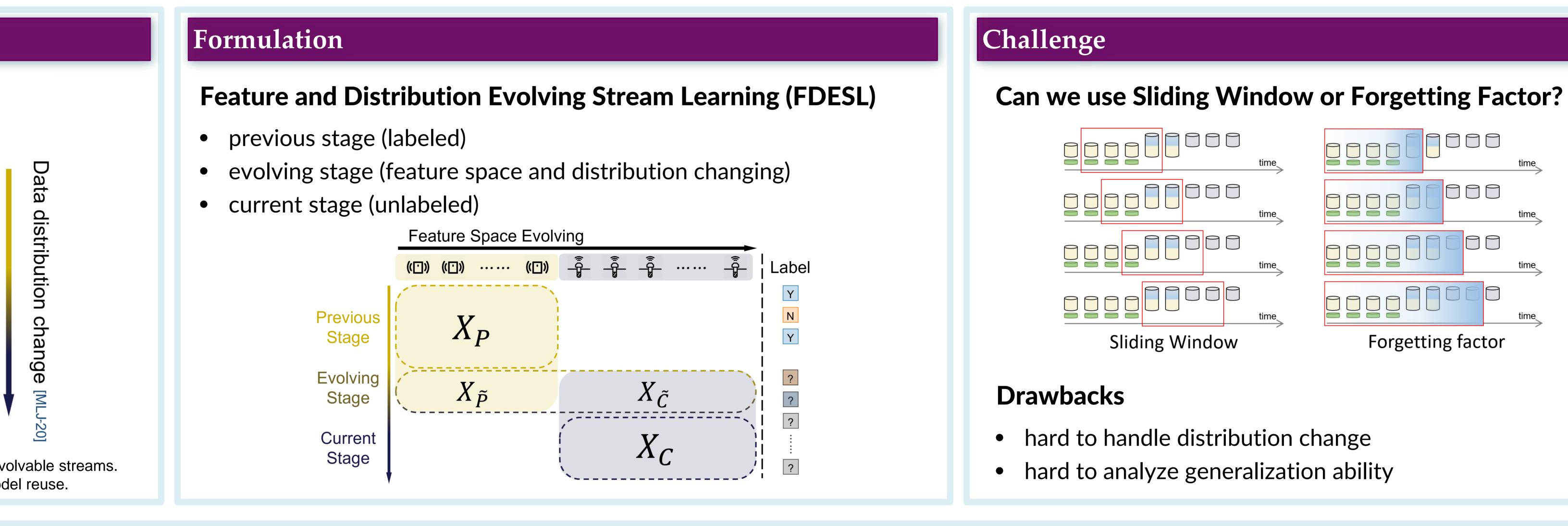
- Evolving discrepancy measures the discrepancy between two consecutive batches (with different feature space & distribution) via the evolving stage
- So we can analyze the generalization ability for the FDESL problem

# Conclusion

# Learning with Feature and Distribution Evolvable Streams

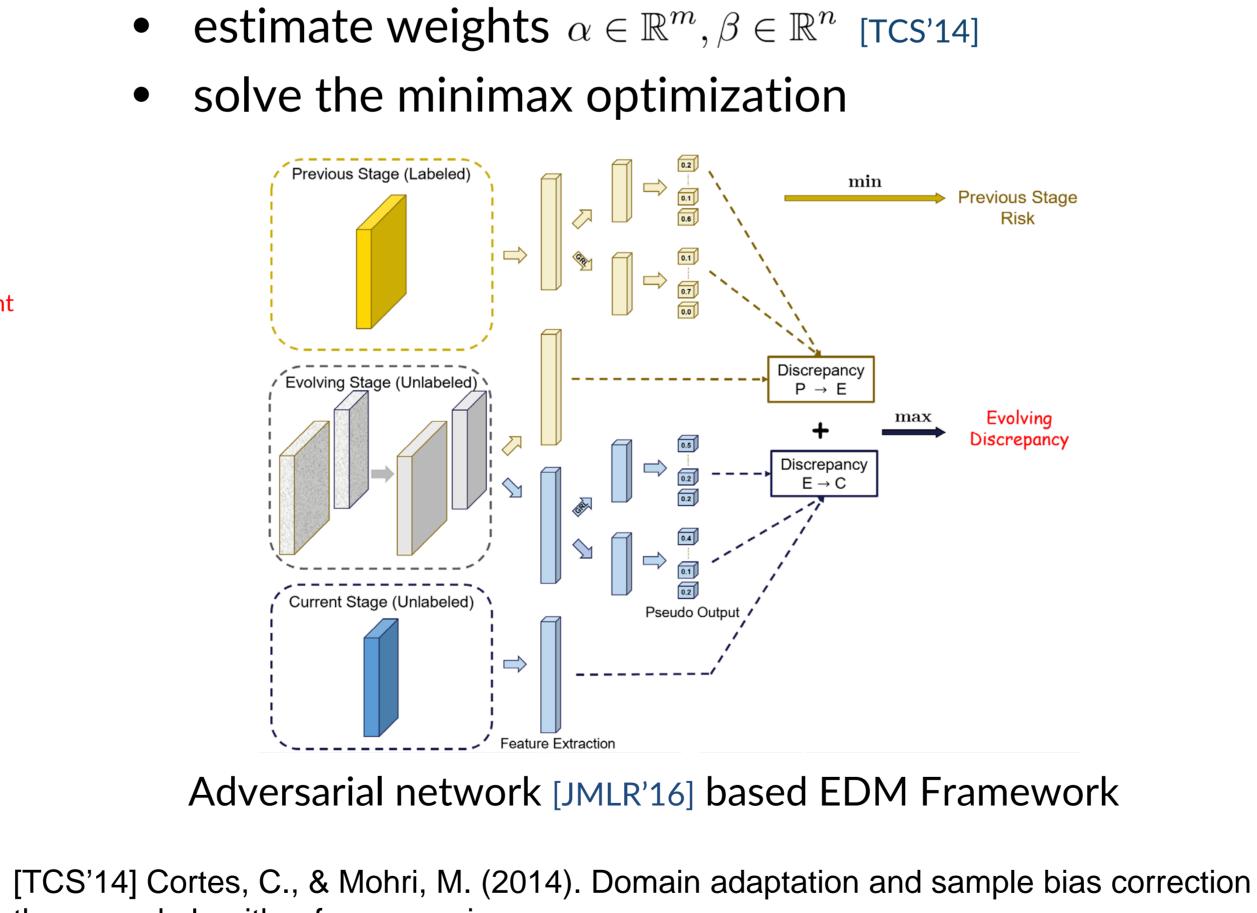
# Zhen-Yu Zhang, Peng Zhao, Yuan Jiang, Zhi-Hua Zhou

{zhangzy, zhaop, jiangy, zhouzh}@lamda.nju.edu.cn



### **Deep Neural Network Implementation**

- solve the minimax optimization



theory and algorithm for regression. [JMLR'16] Ganin, Yaroslav, et al. (2016). Domain-adversarial training of neural networks.

• We formulate the Feature and Distribution Evolving Stream Learning (FDESL) problem, which accommodates a variety of real-world applications We characterize the FDESL problem by evolving discrepancy and derive the generalization ability analysis • We propose the Evolving Discrepancy Minimization (EDM) algorithm and validates the effectiveness on synthetic and real-world data

$$-M_C \sqrt{\frac{\log(1/\delta)}{2n}}$$

 $\mathcal{L}_{S_C}(h, y_C) + \sigma d_1(g, h)$ Hypotheses Alignmen urrent Stage

# Experiments

### Synthetic data

the evolving discrepancy reflects the relation

# **Real-world applications**

the EDM algorithm solves the FDESL problem

# **Evolving discrepancy verification**

| Methods | RFID                              | A.Books                           | A.Movies                          |  |  |
|---------|-----------------------------------|-----------------------------------|-----------------------------------|--|--|
| FESL    | $77.39 \pm 2.5$                   | $70.53\pm4.7$                     | $67.30\pm3.6$                     |  |  |
| TSIW    | $91.34 \pm 1.1$                   | $73.83\pm2.1$                     | $72.61\pm2.0$                     |  |  |
| EDM     | $\textbf{93.32} \pm \textbf{1.2}$ | $\textbf{77.97} \pm \textbf{5.2}$ | $\textbf{76.16} \pm \textbf{1.8}$ |  |  |
|         |                                   |                                   |                                   |  |  |
| Methods | EN-FR                             | FR-SP                             | GR-IT                             |  |  |
| FESL    | $78.51 \pm 1.9$                   | $73.64\pm2.6$                     | $75.12 \pm 1.4$                   |  |  |
| TSIW    | $84.42 \pm 1.8$                   | $79.43 \pm 2.3$                   | $81.92\pm4.4$                     |  |  |
|         |                                   |                                   |                                   |  |  |

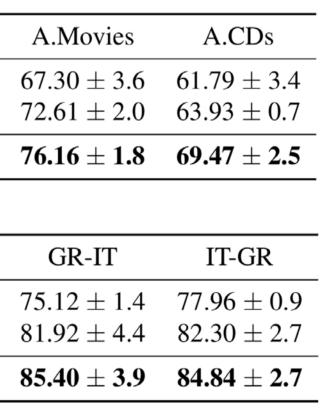
Experiments on real-world applications

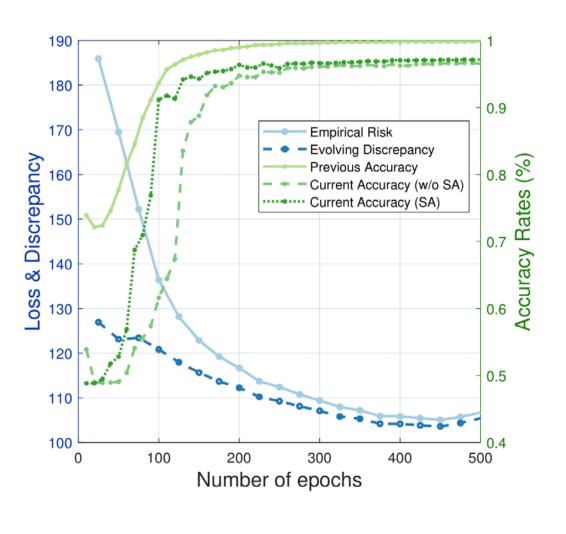




2020 ICML

minimizing the evolving discrepancy improves the average accuracy





**Evolving discrepancy verification**